Skip to main content

VIX Hedge Update...

Given today's market volatility, I wanted to quickly follow up on Michael Kuhow's volatility hedge I commented on a few weeks back on Twitter...

https://twitter.com/42BrooklynDodge/status/1392506799941632007?s=20

The VIX call spread Michael recommended is currently in the black but - as a hedge - it is poorly positioned to offer support should the market volatility continue... let's take a look at the risk of the call spread vs a straight long call...

The call spread is under performing the straight call in every way... PnL is lower, position delta, gamma, vega and leverage are all lower meaning should the market volatility continue to escalate, the spread will be a poor hedge going forward vs buying the straight call.


 

Comments

Popular posts from this blog

Modeling Credit Risk...

     Here's a link to a presentation I gave back in August on modeling credit risk.  If anyone would like a copy of the slides, go ahead and drop me a line... https://www.gotostage.com/channel/39b3bd2dd467480a8200e7468c765143/recording/37684fe4e655449f9b473ec796241567/watch      Timeline of the presentation: Presentation Begins:                                                                0:58:00 Logistic Regression:                                     ...

Modeling Black-Litterman; Part 1 - Reverse Optimization

  "The 'radical' of one century is the 'conservative' of the next." -Mark Twain In this series, I'm going to explore some of the advances in portfolio management, construction, and modeling since the advent of Harry Markowitz's Nobel Prize winning Modern Portfolio Theory (MPT) in 1952. MPT's mean-variance optimization approach shaped theoretical asset allocation models for decades after its introduction.  However, the theory failed to become an accepted industry practice, so we'll explore why that is and what advances have developed in recent years to address the shortcomings of the original model. The Problems with Markowitz For the purpose of illustrating the benefits of diversification in a simple two-asset portfolio, Markowitz's model was a useful tool in producing optimal weights at each level of assumed risk to create efficient portfolios.   However, in reality, investment portfolios are complex and composed of large numbers of holdin...

Modeling Black-Litterman; Part 2 - Incorporating Manager Views

  "The 'radical' of one century is the 'conservative' of the next." -Mark Twain In this series, I'm going to explore some of the advances in portfolio management, construction, and modeling since the advent of Harry Markowitz's Nobel Prize winning Modern Portfolio Theory (MPT) in 1952. MPT's mean-variance optimization approach shaped theoretical asset allocation models for decades after its introduction.  However, the theory failed to become an accepted industry practice, so we'll explore why that is and what advances have developed in recent years to address the shortcomings of the original model. The Black-Litterman Formula The Black-Litterman formula incorporates two distinct inputs; the first is the Implied Equilibrium Return Vector we constructed in Part 1, the second is a series of vectors and matrices that incorporate a manager's views/forecasts of the market.  The product of the formula is an updated Combined Expected Excess Return ...